Simulator Fiktion Poesie Selbsthilfe Kinder- und Jugendliteratur Geistes- und Sozialwissenschaften Sachliteratur Bildung Künste Philosophie Religion Ingenieurwesen und Technologie Verwaltung Informatik Psychologie Biografie Alle Kategorien anzeigen
Este livro visa introduzir e explorar o conceito de Processos de Decisão Markovianos Parcialmente Observáveis (POMDP), aplicados a um cenário prático usando Python. Em particular, o foco está na simulação de um robô que opera em duas salas com diferentes condições de limpeza e toma decisões com base em informações parciais sobre o ambiente.
Os POMDPs são uma extensão dos Processos de Decisão Markovianos (MDPs) que permitem modelar situações onde o robô ou agente não tem acesso completo ao estado atual do sistema, mas sim a observações que fornecem informações parciais. Isso é fundamental em cenários onde a percepção do ambiente é limitada ou ruidosa.
O livro cobre a definição dos estados possíveis (Limpo, Sujo A, Sujo B), as ações possíveis (Esquerda, Direita, Aspirar) e as matrizes de transição de estados ocultos que determinam a probabilidade de mudança de estado em cada sala. Além disso, apresenta funções para observar o ambiente e simular a trajetória do robô, ilustrando como a teoria dos POMDPs é aplicada para resolver problemas de decisão em condições de incerteza.
Seitenanzahl | 110 |
Ausgabe | 1 (2024) |
Format | A5 (148x210) |
Einband | Taschenbuch mit Klappen |
Papiertyp | Coated Silk 90g |
Sprache | Portugiesisch |
Haben Sie Beschwerden über dieses Buch? Sende eine Email an [email protected]
Klicken Sie auf Anmeldung und hinterlassen Sie Ihren Kommentar zum Buch.